Dot Product Definitions a⋅b=a1b1+a2b2+a3b3 a⋅b=21(∥a∥2+∥b∥2−∥b−a∥2) Application a⋅b=∥a∥∥b∥cosθ for θ∈[0,π] Gives an algebraic property that can determine the angle between two oriented segments a⋅b=0⟺a⊥b Algebraic Properties a⋅(b+c)=a⋅b+a⋅c (sa)⋅b=s(a⋅b) a⋅b=b⋅a a⋅a=a12+a22+a32=∥a∥2 Interesting Thing from 3B1B \vec{a} \cdot \vec{b} = \left\| proj_\vec{a}\vec{b}\right\| \left\|\vec{a}\right\|