Boolean Algebra Rules Laws Identity A+0=A A⋅1=A Annulment A+1=1 A⋅0=0 Inverse A+A=1 A⋅A=0 Indepotent A+A=A A⋅A=A Double Negation: A=A Commutative A+B=B+A A⋅B=B⋅A Associative A+(B+C)=(A+B)+C A⋅(B⋅C)=(A⋅B)⋅C Distributive A⋅(B+C)=(A⋅B)+(A⋅C) A+(B⋅C)=(A+B)⋅(A+C) Theorems DeMorgan’s A+B=A⋅B A⋅B=A+B Split the line, change the sign! Redundancy (A+B)⋅(A+B)=AB (A⋅B)+B=A+B Consensus (A+B)⋅(A+C)⋅(B+C)=(A+B)⋅(A+C) AB+AC+BC=AB+AC Absorption A+(A⋅B)=A A⋅(A+B)=A ?? A+(A⋅B)=A+B A⋅(A+B)=A⋅B Reduction AB+AB=A