Derivative Rules
Primary
- dxd[c]=0
- dxd[c⋅f(x)]=c⋅f′(x)
- dxd[xn]=n⋅xn−1
- dxd[f(x)±g(x)]=f′(x)±g′(x)
- dxd[f(x)⋅g(x)]=f(x)g(x)+g(x)f(x)
- dxd[g(x)f(x)]=[g(x)]2g(x)f′(x)−f(x)g′(x)
- dxd[ex]=ex
- dxd[ax]=ax⋅lna
- dxd[lnx]=x1
- dxd[logax]=xlna1
- dxd[f(g(x))]=f′(g(x))⋅g′(x)
- dxd[f−1(x)]=f′(f−1(x))1
- dxd[f′(x)]=f′′(x)
Trig
- dxd[sinx]=cosx
- dxd[cosx]=−sinx
- dxd[tanx]=sec2x
- dxd[secx]=secx⋅tanx
- dxd[cotx]=−csc2x
- dxd[cscx]=−cscx⋅cotx
- dxd[sin−1x]=1−x21
- dxd[tan−1x]=1+x21
- dxd[sec−1x]=∣x∣x2−11