Vector Functions
f:R→Rnr(t)=⟨x(t),y(t),z(t)⟩
Properties
- Domain of r(t) = Domain of x(t) ∩ Domain of y(t) ∩ Domain of z(t)
- Limit:
- limt→t0r(t)=a
- ⟺limt→t0∥r(t)−a∥=0
- ⟺limt→t0x(t)=a1, limt→t0y(t)=a2, limt→t0z(t)=a3
- ⟹ the limit r(t) only exists of the limit for x(t), y(t), and z(t) exist
Derivative
- Geometric significance: The slope of a linear line L(t) through r(a) where r(t)≃L(t) near t=a
- r′(t)=dtdr(t)=limh→0hr(t+h)−r(t)
- r(t) is differentiable at t if this limit exists
- r(t) is differentiable ⟺ it’s components are differentiable
- r′(t)=⟨x′(t),y′(t),z′(t)⟩
Integrals
- Antiderivative: ⟨x(t),y(t),z(t)⟩→⟨X(t),Y(t),Z(t)⟩+C
- One constant per interval of continuity (same as the planar integral)
- The most general antiderivative ≡ Indefinite integral
- ∫r(t)dt=⟨∫x(t)dt,∫y(t)dt,∫z(t)dx⟩
- FTC
- r(t) is continuous ⟹∫abr(t)dt=R(b)−R(a)
- r′(t) is continuous ⟹r(t0)+∫t0tr′(τ)dτ
- Application: Newton’s Law
- r(t)= position vector
- r′(t)=v(t)= velocity
- r′′(t)=v′(t)=a(t)= acceleration
- dtd∥v(t)∥=∥v(t)∥v(t)⋅v′(t): Use for minimizing speed